• E-ISSN 2583-0104
  • Follow us

International Journal of Preclinical and Clinical Research

Article

International Journal of Preclinical and Clinical Research

Year: 2023, Volume: 4, Issue: 2, Pages: 32-37

Review Article

Heart Disease Prediction using Artificial Intelligence and Machine Learning

Received Date:25 July 2023, Accepted Date:05 August 2023, Published Date:14 August 2023

Abstract

Heart-related medical conditions, often known as cardiovascular diseases (CVDs), have emerged as the main cause for death worldwide over the past several decades and are now recognized as the most serious medical conditions in both India and the rest in the entire world. This study focuses on the development of a machine learning-based artificial intelligence system for the identification of heart disease. Diagnose, risk stratification, and management are basically a few of the critical thinking-intensive aspects of medical treatment that have been mechanized because of the development of artificial intelligence (AI) and data science, which has reduced the strain on doctors and decreased the possibility of human error. Using the primary clinical outcomes of each CHD (Congenital heart defects) and the right computational algorithms, risk stratification as well as the prediction of treatment results are feasible. Cardiovascular diseases (CVDs) have a significant economic burden for healthcare systems all over the world and are associated with high morbidity and mortality. In the United States, adults had a prevalence of 7.2% for coronary artery disease, which is one disease category included under the CVDs umbrella. In the years 2016–2017, this disease entity damaged the United States economy 360 billion US dollars. The domain of cardiovascular medicine has expanded in new directions because of the development of artificial intelligence (AI) as well as machine learning over the past two decades. It will be highly beneficial to the treatment of this disease if we are able to predict cardiac arrest in the early stages. A quick and effective detection method must be developed in order to decrease the enormous number of deaths caused by cardiovascular diseases. In order to increase the model's ability for predicting heart disease in every individual, an effective approach was utilized to control how it can be used.

 

Keywords: Artificial intelligence, Pediatric cardiac surgeries, Heart disease detection system, Cardiovascular diseases, Coronary artery disease, Congenital heart defects

References

  1. Chang V, Bhavani VR, Xu AQ, Hossain MA. An artificial intelligence model for heart disease detection using machine learning algorithmsHealthcare Analytics2022;2(100016). Available from: https://doi.org/10.1016/j.health.2022.100016
  2. Quesada JA, Lopez‐pineda A, Gil‐guillén VF, Durazo‐arvizu R, Orozco‐beltrán D, López-Domenech A, et al. Machine learning to predict cardiovascular riskInternational Journal of Clinical Practice2019;73(10):e13389. Available from: https://doi.org/10.1111/ijcp.13389
  3. Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learningBMC Medical Informatics and Decision Making2019;19(1):211215. Available from: https://doi.org/10.1186/s12911-019-0918-5
  4. Nadakinamani RG, Reyana A, Kautish S, Vibith AS, Gupta Y, Abdelwahab SF, et al. Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning TechniquesComputational Intelligence and Neuroscience2022;2022(2973324):113. Available from: https://doi.org/10.1155/2022/2973324
  5. Prabhakaran D, Jeemon P, Roy A. Cardiovascular Diseases in IndiaCirculation2016;133(16):16051620.
  6. Kumar AS, Sinha N. Cardiovascular disease in India: A 360 degree overviewCardiovascular disease in India: A 360-degree overview2020;76(1):13. Available from: https://doi.org/10.1016%2Fj.mjafi.2019.12.005
  7. Gupta R, Joshi P, Mohan V, Reddy KS, Yusuf S. Epidemiology and causation of coronary heart disease and stroke in IndiaHeart2008;94(1):1626. Available from: https://doi.org/10.1136/hrt.2007.132951
  8. Huffman MD, Prabhakaran D, Osmond C, Fall CHD, Tandon N, Lakshmy R, et al. Incidence of Cardiovascular Risk Factors in an Indian Urban Cohort. Europe PMC Funders Group Author ManuscriptJournal of the American College of Cardiology2011;57(17):17651774. Available from: https://doi.org/10.1016%2Fj.jacc.2010.09.083
  9. Snousy MBA, El-Deeb HM, Badran K, Khlil IAA. Suite of decision tree-based classification algorithms on cancer gene expression dataEgyptian Informatics Journal2011;12(2):7382. Available from: https://doi.org/10.1016/j.eij.2011.04.003
  10. Eynde JVD, Kutty S, Danford DA, Manlhiot C. Artificial intelligence in pediatric cardiology: taking baby steps in the big world of dataCurrent Opinion in Cardiology2022;37(1):130136. Available from: https://doi.org/10.1097/hco.0000000000000927
  11. Basu K, Sinha R, Ong A, Basu T. Artificial intelligence: How is it changing medical sciences and its future? Indian Journal of Dermatology2020;65(5):365370. Available from: https://doi.org/10.4103/ijd.ijd_421_20
  12. Barsh YIA, Duhair MK, Ismail HJ, Abu-Nasser BS, Abu-Naser SS. MPG Prediction Using Artificial Neural NetworkInternational Journal of Academic Information Systems Research (IJAISR)2020;4(11):716. Available from: http://ijeais.org/wp-content/uploads/2020/11/IJAISR201102.pdf
  13. Alajrami E. Blood Donation Prediction using Artificial Neural NetworkInternational Journal of Academic Engineering Research (IJAER)2019;3(10):17. Available from: http://dstore.alazhar.edu.ps/xmlui/bitstream/handle/123456789/489/IJAER191001alaa.pdf?sequence=1&isAllowed=y
  14. Seh AH, Chaurasia PK. A Review on Heart Disease Prediction Using Machine Learning TechniqueInternational journal of Management, IT and Engineering2019;9(4):208224.
  15. Gaffar S, Gearhart AS, Chang AC. The Next Frontier in Pediatric CardiologyPediatric Clinics of North America2020;67(5):9951009. Available from: https://doi.org/10.1016/j.pcl.2020.06.010
  16. Bertsimas D, Zhuo D, Dunn J, Levine J, Zuccarelli E, Smyrnakis N. Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning ApproachWorld Journal for Pediatric and Congenital Heart Surgery2021;12(4):453460. Available from: https://doi.org/10.1177/21501351211007106
  17. Samad MD, Wehner GJ, Arbabshirani MR, Jing LMR, Powell AJ, Geva TAJ, et al. Predicting deterioration of ventricular function in patients with repaired tetralogy of Fallot using machine learningEuropean Heart Journal - Cardiovascular Imaging2018;19(7):730738. Available from: https://doi.org/10.1093/ehjci/jey003
  18. Shi H, Yang D, Tang K, Hu C, Li L, Zhang L, et al. Explainable machine learning model for predicting the occurrence of postoperative malnutrition in children with congenital heart diseaseClinical Nutrition2022;41(1):202210. Available from: https://doi.org/10.1016/j.clnu.2021.11.006
  19. Dias RD, Shah JA, Zenati MA. Artificial intelligence in cardiothoracic surgeryMinerva Cardioangiologica2020;68(5):532538. Available from: https://doi.org/10.23736%2FS0026-4725.20.05235-4
  20. Wilhelm D, Ostler D, Müller-Stich B, Lamadé W, Stier A, Feußner H. Artificial intelligence in general and visceral surgeryDer Chirurg2020;91:181189. Available from: https://doi.org/10.1007/s00104-019-01090-w
  21. Arafati A, Hu P, Finn JP, Rickers C, Cheng AL, Jafarkhani H, et al. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical needCardiovascular Diagnosis and Therapy2019;9(S2):S310S325. Available from: https://doi.org/10.21037/cdt.2019.06.09
  22. Xu X, Qiu H, Jia Q, Dong Y, Yao Z, Xie W. AI-CHD: An AI-Based Framework for Cost-Effective Surgical Telementoring of Congenital Heart DiseaseCommunications of the ACM2021;64(12):6674. Available from: https://doi.org/10.1145/3450409
  23. Mahayni AA, Attia ZI, Medina-Inojosa JR, Elsisy MFA, Noseworthy PA, Lopez-Jimenez FA, et al. Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac SurgeryMayo Clinic Proceedings2021;96(12):30623070. Available from: https://doi.org/10.1016/j.mayocp.2021.06.024
  24. Newburger JW, Takahashi M, Burns JC, Disease K. Kawasaki DiseaseJournal of the American College of Cardiology2016;67(14):17381749. Available from: https://doi.org/10.1016/j.jacc.2015.12.073
  25. Ghosh P, Katkar GD, Shimizu C, Kim J, Khandelwal S, Tremoulet AH, et al. An Artificial Intelligence-guided signature reveals the shared host immune response in MIS-C and Kawasaki diseaseNature Communications2022;13(1):2687. Available from: https://doi.org/10.1038/s41467-022-30357-w
  26. Bayers S, Shulman ST, Paller AS. Kawasaki disease: part I. Diagnosis, clinical features, and pathogenesisJournal of the American Academy of Dermatology2013;69(4):e1e11. Available from: https://doi.org/10.1016/j.jaad.2013.07.002
  27. Benovoy M, Dionne A, Mccrindle BW, Manlhiot CW, Ibrahim R, Dahdah N. Deep Learning-Based Approach to Automatically Assess Coronary Distensibility Following Kawasaki DiseasePediatric Cardiology2022;43(4):807815. Available from: https://doi.org/10.1007/s00246-021-02790-z
  28. Martins JFBS, Nascimento ER, Nascimento BR, Sable CA, Beaton AZ, Ribeiro AL, et al. Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learningJournal of the American Medical Informatics Association2021;28(9):18341842. Available from: https://doi.org/10.1093/jamia/ocab061
  29. Asmare MH, Woldehanna F, Janssens L, Vanrumste B. Rheumatic Heart Disease Detection Using Deep Learning from Spectro-Temporal Representation of Un-segmented Heart Sounds2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)2020;p. 168171.
  30. Malik P, Pathania M, Rathaur VK. Overview of Artificial Intelligence in MedicineJournal of Family Medicine and Primary Care2019;8:23282331. Available from: https://doi.org/10.4103%2Fjfmpc.jfmpc_440_19
  31. Basu K, Sinha R, Ong A, Basu T. Artificial intelligence: How is it changing medical sciences and its future? Indian Journal of Dermatology2020;65(5):365370. Available from: https://doi.org/10.4103%2Fijd.IJD_421_20
  32. Helman SM, Herrup EA, Christopher AB, Al-Zaiti SS. The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping reviewCardiology in the Young2021;31(11):17701780. Available from: https://doi.org/10.1017/s1047951121004212
  33. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic reviewComputers in Biology and Medicine2020;122(103801). Available from: https://doi.org/10.1016/j.compbiomed.2020.103801
  34. Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcareArtificial Intelligence in Healthcare2020;2020:295336. Available from: https://doi.org/10.1016%2FB978-0-12-818438-7.00012-5
  35. Diamond GA, Forrester JS. Analysis of Probability as an Aid in the Clinical Diagnosis of Coronary-Artery DiseaseNew England Journal of Medicine1979;300(24):13501358. Available from: https://doi.org/10.1056/nejm197906143002402
  36. Foldyna B, Udelson JE, Karády J, Banerji D, Lu MT, Mayrhofer TMT, et al. Pretest probability for patients with suspected obstructive coronary artery disease: re-evaluating Diamond–Forrester for the contemporary era and clinical implications: insights from the PROMISE trialEuropean Heart Journal - Cardiovascular Imaging2019;20(5):574581. Available from: https://doi.org/10.1093/ehjci/jey182
  37. Genders TSS, Steyerberg EW, Alkadhi HEW, Leschka S, Desbiolles L, Nieman K, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extensionEuropean Heart Journal2011;32(11):13161330. Available from: https://doi.org/10.1093/eurheartj/ehr014
  38. Genders TSS, Steyerberg EW, Hunink MGM, Nieman KG, Galema TW, Mollet NR, et al. Prediction model to estimate presence of coronary artery disease: retrospective pooled analysis of existing cohortsBMJ2012;344(jun12 1):e3485. Available from: https://doi.org/10.1136/bmj.e3485
  39. Li D, Xiong G, Zeng H, Zhou Q, Jiang J, Guo X. Machine learning-aided risk stratification system for the prediction of coronary artery diseaseInternational Journal of Cardiology2021;326:3034. Available from: https://doi.org/10.1016/j.ijcard.2020.09.070
  40. Velusamy D, Ramasamy K. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subsetComputer Methods and Programs in Biomedicine2021;198(105770). Available from: https://doi.org/10.1016/j.cmpb.2020.105770
  41. Muhammad LJ, Al-Shourbaji I, AAH, IAM, Ahmad A, Jibrin MB. Machine Learning Predictive Models for Coronary Artery DiseaseSN Computer Science2021;2(5):350. Available from: https://doi.org/10.1007%2Fs42979-021-00731-4
  42. Lin S, Li Z, Fu B, Chen S, Li X, Wang Y, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photoEuropean Heart Journal2020;41(46):44004411. Available from: https://doi.org/10.1093/eurheartj/ehaa640
  43. Budoff MJ, Mayrhofer T, Ferencik M, Bittner D, Lee KL, Lu MT, et al. Prognostic Value of Coronary Artery Calcium in the PROMISE Study (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) Circulation2017;136(21):19932005. Available from: https://doi.org/10.1161/circulationaha.117.030578

Copyright

© 2023 Chinmayi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Basaveshwara Medical College & Hospital, Chitradurga, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.