• E-ISSN 2583-0104
  • Follow us

International Journal of Preclinical and Clinical Research

Article

International Journal of Preclinical and Clinical Research

Year: 2022, Volume: 3, Issue: 2, Pages: 37-44

Original Article

Accuracy of Quick Covid-19 Severity Index and Brescia-Covid Respiratory Severity Scale in Predicting ICU Admission and Mortality

Received Date:02 May 2022, Accepted Date:06 June 2022, Published Date:05 July 2022

Abstract

The usefulness of risk screening tools in triaging and predicting likelihood of adverse outcomes of COVID-19 patients at first point of contact, would prevent overestimation or underestimation of severity risk in COVID pneumonia. BCRSS algorithm, a dynamic risk predictor, that uses clinical parameters of patient to assess need for escalating levels of respiratory support(Non-invasive ventilation, intubation, proning) to suggest treatment recommendations. Quick COVID-19 Severity Index (qCSI) is based on 3 variables (nasal cannula flow rate, respiratory rate, minimum documented pulse oximetry). To compare prognostic performance of BCRSS and qCSI-scores of hospitalized patients diagnosed with COVID-19. This is a Retrospective record-based study conducted at a tertiary hospital in Karnataka among COVID-19 patients. Patient’s clinical severity grade classification was done according to standard guidelines by Government of India. BCRSS and qCSI scores were calculated using baseline clinical information of patients. Statistical analysis used were Chi-squared test, regression analysis and ROC curve. The study results showed that out of 363 patients, majority of patients with high qCSI risk score of 3 and those with high BCRSS risk score of 4 were found to have high rates of ICU admissions and in-hospital deaths (66.9% and 44.4% for qCSI-3; 34.6% and 1.9% for BCRSS-4). With every unit increase in qCSI and BCRSS scores, there were 2.68 and 1.58 times more risk of fatality respectively. ROC curves for qCSI and BCRSS scales showed high area under curve:qCSI(AUC:0.761) and BCRSS(AUC:0.760), to predict in-hospital fatality. The study has shown that both qCSI and BCRSS scoring models have good results for predicting probabilities of ICU admissions and in-hospital mortality of COVID-19 patients.

 

 

Key Messages: These risk prediction models, if applied during the initial clinical assessment stage, could help in better triaging, risk prediction, better treatment of COVID-19 patients.

Keywords: Quick COVID-19 Severity Index, Brescia-COVID Respiratory Severity Scale, in-hospital mortality, COVID-19, ICU admission

References

  1. Kumar G, Mukherjee A, Sharma RK, Menon GR, Sahu D, Wig N, et al. Clinical profile of hospitalized COVID-19 patients in first & second wave of the pandemic: Insights from an Indian registry based observational studyIndian J Med Res2021;153(5 & 6):619628. Available from: https://doi.org/10.4103/ijmr.ijmr_1628_21
  2. Haimovich AD, Ravindra NG, Stoytchev S, Young HP, Wilson FP, Dijk DV, et al. Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical DecompensationAnnals of Emergency Medicine2020;76(4):442453. Available from: https://doi.org/10.1016/j.annemergmed.2020.07.022
  3. Rodriguez-Nava G, Yanez-Bello MA, Trelles-Garcia DP, Chung CW, Friedman HJ, Hines DW. Performance of the quick COVID-19 severity index and the Brescia-COVID respiratory severity scale in hospitalized patients with COVID-19 in a community hospital settingInternational Journal of Infectious Diseases2021;102:571576. Available from: https://doi.org/10.1016/j.ijid.2020.11.003
  4. Rohat AK, Kurt E, Şenel ÇE. The comparison of two prediction models for ureteral stones: CHOKAI and STONE scoresThe American Journal of Emergency Medicine2021;44:187191. Available from: https://doi.org/10.1016/j.ajem.2020.08.099
  5. Faruqui N, Raman VR, Shiv J, Chaturvedi S, Muzumdar M, Prasad V. Informal collectives and access to healthcare during India’s COVID-19 second wave crisisBMJ Global Health2021;6(7):e006731. Available from: http://dx.doi.org/10.1136/bmjgh-2021-006731
  6. Forchette L, Sebastian W, Liu T. A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and TherapeuticsCurrent Medical Science2021;41(6):10371051. Available from: https://doi.org/10.1007/s11596-021-2395-1
  7. Ghosh S, Moledina N, Hasan MM, Jain S, Ghosh A. Colossal challenges to healthcare workers combating the second wave of coronavirus disease 2019 (COVID-19) in IndiaInfection Control & Hospital Epidemiology2021;p. 12. Available from: https://doi.org/10.1017%2Fice.2021.257
  8. Madkaikar M, Gupta N, Yadav RM, Bargir UA. India’s crusade against COVID-19Nature Immunology2021;22(3):258259. Available from: https://doi.org/10.1038/s41590-021-00876-7
  9. Thangaraj JWV, Yadav P, Kumar CG, Shete A, Nyayanit DA, Rani DS, et al. Predominance of delta variant among the COVID-19 vaccinated and unvaccinated individuals, India, May 2021Journal of Infection2022;84(1):94118. Available from: https://doi.org/10.1016/j.jinf.2021.08.006
  10. Paranthaman K, Conlon CP, Parker C, Mccarthy N. Resource Allocation during an Influenza PandemicEmerging Infectious Diseases2008;14(3):520522. Available from: https://doi.org/10.3201%2Feid1403.071275
  11. Duca A, Piva S, Focà E, Latronico N, Rizzi M. Calculated Decisions: Brescia-COVID Respiratory Severity Scale (BCRSS)/AlgorithmEmerg Med Pract2020;22(5 (supp)):CD1CD2. Available from: https://pubmed.ncbi.nlm.nih.gov/32297727/
  12. Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curvesCrit Care2004;8:508520. Available from: https://doi.org/10.1186%2Fcc3000
  13. Thakur B, Dubey P, Benitez J, Torres JP, Reddy S, Shokar N, et al. A systematic review and meta-analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID-19Scientific Reports2021;11(1):8562. Available from: https://doi.org/10.1038/s41598-021-88130-w
  14. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, ChinaJAMA2020;323(11):1061. Available from: https://doi.org/10.1001/jama.2020.1585
  15. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, ItalyJAMA2020;323(16):15741581. Available from: https://doi.org/10.1001/jama.2020.5394
  16. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington StateJAMA2020;323(16):16121614. Available from: https://doi.org/10.1001/jama.2020.4326
  17. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in ChinaN Engl J Med2020;382(18):17081720. Available from: https://www.nejm.org/doi/full/10.1056/nejmoa2002032
  18. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort studyThe Lancet2020;395(10229):10541062. Available from: https://doi.org/10.1016/s0140-6736(20)30566-3

Copyright

© 2022 Prashanth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Basaveshwara Medical College & Hospital, Chitradurga, Karnataka.

DON'T MISS OUT!

Subscribe now for latest articles and news.